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SimpleMC
To compute parameter constraints we built a simple and fast MCMC code!
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the one referred to as ⌫CDM, where it is a free param-
eter. The default implies !⌫ = 6.57 ⇥ 10�4 including
massless species and !⌫ = 6.45 ⇥ 10�4 excluding them.
The e↵ect of finite neutrino temperature at z = 0 is a
very small 10�4 relative e↵ect. The adopted values are
close to the minimum value allowed by neutrino oscilla-
tion experiments.

We consider a variety of models for the evolution of
the energy density or equation-of-state parameter w =
p
de

/⇢
de

. Table I summarizes the primary models dis-
cussed in the paper, though we consider some additional
special cases in Section VI. ⇤CDM represents a flat uni-
verse with a cosmological constant (w = �1). o⇤CDM
extends this model to allow non-zero ⌦k. wCDM adopts
a flat universe and constant w, and owCDM generalizes
to non-zero ⌦k. w

0

waCDM and ow
0

waCDM allow w(a)
to evolve linearly with a(t), w(a) = w

0

+wa(1�a). Poly-
CDM adopts a quadratic polynomial form for ⇢

de

(a) and
allows non-zero space curvature, to provide a highly flex-
ible description of the e↵ects of dark energy at low red-
shift. Finally, Slow Roll Dark Energy is an example of
a one-parameter evolving-w model, based on a quadratic
dark energy potential.

We focus in this paper on parameter constraints and
model tests from measurements of cosmic distances and
expansion rates, which we refer to collectively as “expan-
sion history” or “geometric” constraints. We briefly con-
sider comparisons to measurements of low-redshift mat-
ter clustering in Section VII. In this framework, the cru-
cial roles of CMB anisotropy measurements are to con-
strain the parameters (mainly !m and !b) that deter-
mine the BAO scale and to determine the angular di-
ameter distance to the redshift of recombination. For
most of our analyses, this approach allows us to use a
highly compressed summary of CMB constraints, dis-
cussed in Section II C below, and to compute param-
eter constraints with a simple and fast Markov Chain
Monte Carlo (MCMC) code that computes expansion
rates and distances from the Friedmann equation. The
code is publicly available with data used in this paper at
https://github.com/slosar/april.

B. BAO data

The BAO data in this work are summarized in Table
II and more extensively discussed below.

The robustness of BAO measurements arises from the
fact that a sharp feature in the correlation function (or
an oscillatory feature in the power spectrum) cannot be
readily mimicked by systematics, whether observational
or astrophysical, as these should be agnostic about the
BAO scale and hence smooth over the relevant part of
the correlation function (or power spectrum). In most
current analyses, the BAO scale is determined by adopt-
ing a fiducial cosmological model that translates angular
and redshift separations to comoving distances but allow-
ing the location of the BAO feature itself to shift relative

to the fiducial model expectation. One then determines
the likelihood of obtaining the observed two-point corre-
lation function or power spectrum as a function of the
BAO o↵sets, while marginalizing over nuisance param-
eters. These nuisance parameters characterize “broad-
band” physical or observational e↵ects that smoothly
change the shape or amplitude of the underlying correla-
tion function or power spectrum, such as scale-dependent
bias of galaxies or the LyaF, or distortions caused by con-
tinuum fitting or by variations in star-galaxy separation.
In an isotropic fit, the measurement is encoded in the
↵ parameter, the ratio of the measured BAO scale to
that predicted by the fiducial model. In an anisotropic
analysis, one separately constrains ↵? and ↵k, the ratios
perpendicular and parallel to the line of sight. In real
surveys the errors on ↵? and ↵k are significantly cor-
related for a given redshift slice, but they are typically
uncorrelated across di↵erent redshift slices. While the
values of ↵ are referred to a specified fiducial model, the
corresponding physical BAO scales are insensitive to the
choice of fiducial model within a reasonable range.

The BAO scale is set by the radius of the sound horizon
at the drag epoch zd when photons and baryons decouple,

rd =

Z 1

zd

cs(z)

H(z)
dz , (10)

where the sound speed in the photon-baryon fluid is

cs(z) = 3�1/2c
⇥
1 + 3

4

⇢b(z)/⇢�(z)
⇤�1/2

. A precise pre-
diction of the BAO signal requires a full Boltzmann code
computation, but for reasonable variations about a fidu-
cial model the ratio of BAO scales is given accurately by
the ratio of rd values computed from the integral (10).
Thus, a measurement of ↵? from clustering at redshift
z constrains the ratio of the comoving angular diameter
distance to the sound horizon:

DM (z)/rd = ↵?DM,fid(z)/rd,fid . (11)

A measurement of ↵k constrains the Hubble parameter
H(z), which we convert to an analogous quantity:

DH(z) = c/H(z), (12)

with

DH(z)/rd = ↵kDH,fid(z)/rd,fid . (13)

An isotropic BAO analysis measures some e↵ective com-
bination of these two distances. If redshift-space distor-
tions are weak, which is a good approximation for lu-
minous galaxy surveys after reconstruction but not for
the LyaF, then the constrained quantity is the volume
averaged distance

DV (z) =
⇥
zDH(z)D2

M (z)
⇤
1/3

, (14)

with

DV (z)/rd = ↵DV,fid(z)/rd,fid. (15)
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MCMC is an algorithm that walks around the likelihood 
and produces samples 

SimpleMC

• Scales perfectly for small number 
of chains, but not on modern 
architectures with 1000s of cores 
one always needs to throw away 
some ~thousands steps, because 
of the burn in period.  

( the initial state is “forgotten")
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• Populate a lists of Gaussians with a single Gaussian 
centered at a chosen point with a suitable covariance

• Take N samples from the most recently added Gaussian

• Calculate importance sample weights

2

One can use weighted samples in exactly the same way one uses standard MCMC weights but counting weights
as representing wi samples at position xi. For example, the marginalized posterior probabilities can be found by
measuring the weighted histograms. The expectation values of parameters can be calculated simply by

E(hxi) =
P

wixiP
wi

, (4)

etc.
Importance sampling algorithm is formally always correct (as long a Ls is always positive where Lt is positive),

however, the speed of convergence is or course massively a↵ected by how close the source and target distributions are.
One wants weights to not vary too much in magnitude.

Traditionally, people tried to sample a complex likelihood, by embedding it into a single large Gaussian. In many
dimensions this fails miserably.

B. New algorithm

The new algorithm is an importance sampling algorithm, where we assume the source likelihood is a sum of
Gaussians

Ls(x) =
X

i

Gi(x � µi,Ci) (5)

Additional, we always choose A, so that the the weight at the maximum (i.e. the best discovered maximum so far)
of target likelihood is unity.

The algorithm proceeds as follow

1. Populate a list of Gaussians with a single Gaussian centered at a chosen starting point. The covariance of this
Gaussian can in principle be anything, but a good choice, such as suitably regularized second derivative matrix
of the target likelihood works best.

2. Take N samples from the most recently added Gaussian in the list. That is, draw N samples from this Gaussian
and evaluate the target likelihood at those positions. These N samples can be taken in a trivially parallelizable
manner.

3. After this step, we have N samples taken from each of the M Gaussians in the list. These N samples therefore
sample the probability distribution given in Equation 5.

Now we calculate importance sample weights,

wi = A
Lt(xi)P

j=1...M Gj(xi � µj ,Cj)
, (6)

where A is chosen so that the weight is unity at the position of the maximum encountered likelihood of Lt. If
Ls is sampling the target distribution well, the weights will be around unity, much less than unity where we are
oversampling the parameters space and much more than unity where we are undersampling parameter space.
At this point we can also calculate the e↵ective number of samples according to the formula

Ne↵ =

P
wi

max(wi)
(7)

This formula counts the maximum weight as one sample and others are suppressed by their relative irrelevance.

4. Determine convergence by calculating Ne↵ and demanding that it is larger than some large number (typically
we demand Ne↵ > 4000. See discussion below.

5. Locate the highest importance weight – this is the position where our covering function is not sampling the
distribution well. Add a Gaussian centered at that position and repeat the step number 2 until converged[2].

A natural convergence tests would be to demand that the maximum weight is less than some predetermined criterion.
However, our numerical experiments has shown that demanding a minimum Ne↵ is a better test of convergence for
the following reason. Intuitive demand for the convergence is that our covering Gaussians have significant probability

• Add a new Gaussian at the position of the largest importance weight

• Repeat step 2, until convergence

Gaussian Embedding Sampling

	     If Ls is sampling the target distribution well the weights will be around unity,  << 1 we are  
oversampling the parameters space and >> 1 where we are undersampling parameter space 
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(7)

This formula counts the maximum weight as one sample and others are suppressed by their relative irrelevance.

4. Determine convergence by calculating Ne↵ and demanding that it is larger than some large number (typically
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5. Locate the highest importance weight – this is the position where our covering function is not sampling the
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A natural convergence tests would be to demand that the maximum weight is less than some predetermined criterion.
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the following reason. Intuitive demand for the convergence is that our covering Gaussians have significant probability

Gaussian
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Stopping criteria

Values close to 1 indicate good agreement 
between the importance function and the target density.

The effective number of samples

2
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For fun ..
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Use real data
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FIG. 6: This Figure shows the agreement of the MCMC sampling method (blue lines) compared with the pallalelize GSam-
pler,using 100 cores and 2000 sampling points per gaussian, (red lines). Left panel shows 2D posterior distributions. Right
panel displays convergence values computed from Eq. 9. Green line was produced with (µi+1 � µi)Cij(µj+1 � µj)

T , where
subscripts represent the number of gaussians; in this case we used 50 Gaussians.

that, but it isn’t obvious why you can ignore the e↵ect of the 1st step on the locations of 2nd points. Maybe it all
comes out in the wash, e.g., only a↵ecting noise, not mean distribution or something. There is a sort of paradox that
one point of view seems to make it work but another doesn’t. ]

[AS: I see what it is bothering you, that fact that the way how I construct to source likelihood surface correlates with
what I intend to sample making importance sampling somehow biased? For example, if you MCMC by having proposal
that corresponds to the local covariance matrix definitely gives you biased sampling, because you break the detailed
balance. But with the importance sampling, the entire point is to get a source distribution that is as correlated with the
target one as possible, as the algorithm works for any distribution, as long as you fairly sample it. Ok, there might be
a miniscule e↵ect from the fact that you put the second likelihood at an actual realized sampled point of the first one,
so maybe I should remove that point, though that shouldn’t matter (it is one sample in a thousand). ] [PM: The whole
2nd sample is created around a special place weighted in some strange way by the relation between the approximation
of the likelihood you’re making near the first and the truth... naively it is easy to imagine a bias coming from that...
but I’m leaning toward believing it is probably ok, at least in an appropriate limit like where you generate a lot of points
for each Gaussian. It is hard to get around the fact that if I just gave you this set of central points for Gaussians,
telling you it was a good set of points because it allows you to represent the full likelihood pretty accurately, no one
would question the fairness of a set of points generated from the sum of Gaussians. The question then becomes, is it
really more e�cient in practice than anything else... yes, there seems to be a parallelization advantage. If you didn’t
read this somewhere, why hasn’t something like it been tried advertised before? (I’ve often wanted to try to represent
likelihood by a set of 2nd-derivative-determined approximationes that somehow followed allowed contours around in
complex situations, but never had the Monte Carlo with importance samping idea... but mostly I figure people who do
this for a living have probably already thought of every possible thing, so I am foolish to daydream about improving.)
Have you thought about the possibility that the relevant 2nd derivative matrix has negative eigenvalues, i.e., one of
your Gaussians isn’t normalizable? I guess there wouldn’t be anything wrong with kind of arbitrarily regulating it with
a prior of some sort. ] [AS: Actually, regulating this second order prior is really di�cult. I’ve tried various recipes
and they all work fine in 2D, but in 20D they fail.]

Cosmosis
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BOSS - DR12
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BOSS at a glance!
(Baryon Oscillation Spectroscopic Survey)

• Uses 2.5 m SDSS telescope, APO 
• Will get spectra of 
  1.5M LRG (z<0.7) 
  160,000 QSOs (2.2<z<3) 
• Sky Area: 10,000 sq. degrees 
• Wavelength: 360 nm (UV),1000 nm (IR)   
• Medium resolution: R~2000 
• Survey completed June 2014

BAO in SDSS-III BOSS galaxies 7

Figure 1. The footprint of the subsamples corresponding to the Northern and Southern galactic caps of the BOSS DR12 combined sample. The circles indicate
the different pointings of the telescope and their colour corresponds to the sector completeness. The total area in the combined sample footprint, weighted by
completeness, is 10,087 deg2. Of these, 759 deg2 are excluded by a series of veto masks, leaving a total effective area of 9329 deg2. See Reid et al. 2016 for
further details on completeness calculation and veto masks.

combining the catalogues. Each galaxy in this combined sample
is then weighted by the redshift-dependent FKP weight (Feldman,
Kaiser, & Peacock 1994).

The clustering amplitude of different selections within the
CMASS selection varies considerably more than the individual se-
lections; the difference in clustering amplitude between a luminous
red selection and one that isolates the bluest galaxies is a factor of
two (Ross et al. 2014; Favole et al. 2015; Patej & Eisenstein 2016).
However, even when optimally weighting for this difference, the
forecasted improvement in the statistical power of BOSS is 2.5 per-
cent and our attempts to employ such a weighting in mock samples
were unable to obtain even such a modest improvement. Therefore,
we have chosen to not introduce this additional complexity into our
analysis.

We define the overall redshift range to consider for BOSS
galaxies as 0.2 < z < 0.75. Below the limit of redshift 0.2, the
sample is affected by the r > 16 selection, and the BAO scale has
been measured for z < 0.2 galaxies in the SDSS-I/II main galaxy
redshift survey (Strauss et al. 2002) by Ross et al. (2015).. The up-
per limit of 0.75 is higher than in our previous analyses as we find
no systematic concerns associated with using the z > 0.7 data, but
the number density has decreased to 10�5h3Mpc�3 at z = 0.75
and any additional data at higher redshift offer negligible improve-
ment in the statistical power of the BOSS sample.

We defined the redshift bins used in this analysis based on an
ensemble of 100 mock catalogues of the combined BOSS sample
in the range 0.2 < z < 0.75. We tested several binning schemes
by means of anisotropic BAO measurements on these mock cat-
alogues. For each configuration, we ran an MCMC analysis us-
ing the mean value and errors from the BAO measurements, com-
bining them with synthetic CMB measurements (distance priors)
corresponding to the same cosmology of these mock catalogues.
We chose the binning that provides the strongest constraints on
the dark energy equation-of-state parameter wDE. It consists of
two independent redshift bins of nearly equal effective volume for
0.2 < z < 0.5 and 0.5 < z < 0.75. In order to ensure we have
counted every pair of BOSS galaxies, we also define an overlapping
redshift-bin of nearly the same volume as the other two, covering
the redshift range 0.4 < z < 0.6. Using our mock catalogues,
with the original LOWZ and CMASS redshift binning we obtain
a 3.5% (9.6%) precision measurement of the transverse (line-of-
sight) BAO scale in the LOWZ sample and a 1.8% (4.3%) precision

measurement for the CMASS sample. With our chosen binning for
the combined sample, we instead obtain transverse (line-of-sight)
precision of 2.5% (6.3%) in our low redshift bin and 2.3% (5.6%)
in our high redshift bin , comparable for the two samples by design.
Our results in § 8.3 are consistent with these expected changes of
precision relative to the LOWZ and CMASS samples. Measure-
ments in the overlapping redshift bin are of course covariant with
those in the two independent bins, and we take this covariance (es-
timated from mock catalogues) into account when deriving cosmo-
logical constraints. See Table 2 for a summary of the combined
sample.

2.4 The NGC and SGC sub-samples

The DR12 combined sample is observed across the two Galactic
hemispheres, referred to as Northern (NGC) and Southern (SGC)
galactic caps. As these two regions do not overlap, they are prone
to slight offsets in their photometric calibration. As described in ap-
pendix A, we find good evidence that the NGC and SGC subsam-
ples probe slightly different galaxy populations for the low-redshift
part of the combined sample, and that this difference is consistent
with an offset in photometric calibration between the NGC and the
SGC (first reported by Schlafly & Finkbeiner 2011). Having estab-
lished the reason for the observed difference in clustering ampli-
tude, we decide not to re-target the SGC but rather to simply allow
sufficient freedom when fitting models to the clustering statistics
in each galactic cap, as to allow for this slight change in galaxy
population. In particular, the different Fourier-space statistics are
modelled with different parameters (e.g., bias [TODO: and nui-
sance parameters?]) in the two hemispheres, as appropriate for
each method. Using fits of the MD-Patchy mocks, we find that this
approach brings no penalty in uncertainty of fitted parameters. We
refer the reader to the individual companion papers for details on
how this issue was tackled in each case.

3 METHODOLOGY

3.1 Clustering measurements

We study the clustering properties of the BOSS combined sample
by means of anisotropic two-point statistics in configuration and

c
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BAO in SDSS-III BOSS galaxies 7

Figure 1. The footprint of the subsamples corresponding to the Northern and Southern galactic caps of the BOSS DR12 combined sample. The circles indicate
the different pointings of the telescope and their colour corresponds to the sector completeness. The total area in the combined sample footprint, weighted by
completeness, is 10,087 deg2. Of these, 759 deg2 are excluded by a series of veto masks, leaving a total effective area of 9329 deg2. See Reid et al. 2016 for
further details on completeness calculation and veto masks.

combining the catalogues. Each galaxy in this combined sample
is then weighted by the redshift-dependent FKP weight (Feldman,
Kaiser, & Peacock 1994).

The clustering amplitude of different selections within the
CMASS selection varies considerably more than the individual se-
lections; the difference in clustering amplitude between a luminous
red selection and one that isolates the bluest galaxies is a factor of
two (Ross et al. 2014; Favole et al. 2015; Patej & Eisenstein 2016).
However, even when optimally weighting for this difference, the
forecasted improvement in the statistical power of BOSS is 2.5 per-
cent and our attempts to employ such a weighting in mock samples
were unable to obtain even such a modest improvement. Therefore,
we have chosen to not introduce this additional complexity into our
analysis.

We define the overall redshift range to consider for BOSS
galaxies as 0.2 < z < 0.75. Below the limit of redshift 0.2, the
sample is affected by the r > 16 selection, and the BAO scale has
been measured for z < 0.2 galaxies in the SDSS-I/II main galaxy
redshift survey (Strauss et al. 2002) by Ross et al. (2015).. The up-
per limit of 0.75 is higher than in our previous analyses as we find
no systematic concerns associated with using the z > 0.7 data, but
the number density has decreased to 10�5h3Mpc�3 at z = 0.75
and any additional data at higher redshift offer negligible improve-
ment in the statistical power of the BOSS sample.

We defined the redshift bins used in this analysis based on an
ensemble of 100 mock catalogues of the combined BOSS sample
in the range 0.2 < z < 0.75. We tested several binning schemes
by means of anisotropic BAO measurements on these mock cat-
alogues. For each configuration, we ran an MCMC analysis us-
ing the mean value and errors from the BAO measurements, com-
bining them with synthetic CMB measurements (distance priors)
corresponding to the same cosmology of these mock catalogues.
We chose the binning that provides the strongest constraints on
the dark energy equation-of-state parameter wDE. It consists of
two independent redshift bins of nearly equal effective volume for
0.2 < z < 0.5 and 0.5 < z < 0.75. In order to ensure we have
counted every pair of BOSS galaxies, we also define an overlapping
redshift-bin of nearly the same volume as the other two, covering
the redshift range 0.4 < z < 0.6. Using our mock catalogues,
with the original LOWZ and CMASS redshift binning we obtain
a 3.5% (9.6%) precision measurement of the transverse (line-of-
sight) BAO scale in the LOWZ sample and a 1.8% (4.3%) precision

measurement for the CMASS sample. With our chosen binning for
the combined sample, we instead obtain transverse (line-of-sight)
precision of 2.5% (6.3%) in our low redshift bin and 2.3% (5.6%)
in our high redshift bin , comparable for the two samples by design.
Our results in § 8.3 are consistent with these expected changes of
precision relative to the LOWZ and CMASS samples. Measure-
ments in the overlapping redshift bin are of course covariant with
those in the two independent bins, and we take this covariance (es-
timated from mock catalogues) into account when deriving cosmo-
logical constraints. See Table 2 for a summary of the combined
sample.

2.4 The NGC and SGC sub-samples

The DR12 combined sample is observed across the two Galactic
hemispheres, referred to as Northern (NGC) and Southern (SGC)
galactic caps. As these two regions do not overlap, they are prone
to slight offsets in their photometric calibration. As described in ap-
pendix A, we find good evidence that the NGC and SGC subsam-
ples probe slightly different galaxy populations for the low-redshift
part of the combined sample, and that this difference is consistent
with an offset in photometric calibration between the NGC and the
SGC (first reported by Schlafly & Finkbeiner 2011). Having estab-
lished the reason for the observed difference in clustering ampli-
tude, we decide not to re-target the SGC but rather to simply allow
sufficient freedom when fitting models to the clustering statistics
in each galactic cap, as to allow for this slight change in galaxy
population. In particular, the different Fourier-space statistics are
modelled with different parameters (e.g., bias [TODO: and nui-
sance parameters?]) in the two hemispheres, as appropriate for
each method. Using fits of the MD-Patchy mocks, we find that this
approach brings no penalty in uncertainty of fitted parameters. We
refer the reader to the individual companion papers for details on
how this issue was tackled in each case.

3 METHODOLOGY

3.1 Clustering measurements

We study the clustering properties of the BOSS combined sample
by means of anisotropic two-point statistics in configuration and

c
� 2016 RAS, MNRAS 000, 1–37



13

BAO data

9

Figure 1. The BAO “Hubble diagram” from a world collection of detections. Blue, red, and green points show BAO measure-
ments of DV /rd, DM/rd, and DH/rd, respectively, from the sources indicated in the legend. These can be compared to the
correspondingly colored lines, which represents predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3183, h = 0.6704,
see §II C). The scaling by

p
z is arbitrary, chosen to compress the dynamic range su�ciently to make error bars visible on the

plot. Filled points represent BOSS data, which yield the most precise BAO measurements at z < 0.7 and the only measurements
at z > 2. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift; auto-correlation points are
plotted at the correct e↵ective redshift.

nova data can be combined to yield an “inverse distance
ladder” measurement of H

0

, which utilizes the CMB mea-
surements of !cb and !b but no other CMB information.
This value of H

0

is robust to very flexible assumptions
about dark energy evolution and space curvature, though
it does assume a standard radiation background for the
calculation of rd. We plot the resulting determination of
H

0

= 67.3±1.1 km s�1 Mpc�1 as the open square in both
panels.

The grey swath in both panels represents the 1� re-
gion for fiducial Planck ⇤CDM model, with the top panel
clearly showing the transition from deceleration to accel-
eration at z ⇡ 0.6. Formally, we are scaling both panels
by (rd/rd,fid), so that the comparison of the BAO data
points to the CMB prediction is invariant to changes in
the sound horizon. The galaxy BAO measurements of
DM (z) from BOSS and MGS are in excellent agreement
with the predictions of this model (as are the other mea-
surements shown previously in Fig. 1), and the combi-

nation of BAO and SNe yields an H
0

value in excellent
agreement with this model’s prediction. The expansion
rate H(z = 0.57) from CMASS is high compared to the
model prediction, at moderate significance. Compared
to Planck, the best-fit value of ⌦mh2 from the 9-year
WMAP analysis [57] is lower, 0.143 vs. 0.137, imply-
ing lower ⌦m and slightly higher h for a ⇤CDM model.
The model using these best-fit parameters, shown by the
dashed lines, agrees better with the CMASS H(z) mea-
surement but is in tension with the distance data, espe-
cially the CMASS value of DM (z = 0.57).

The Ly↵ forest measurements are much more di�cult
to reconcile with the ⇤CDM model: compared to the
Planck curve, the LyaF BAO H(z) is low and [DM (z)]�1

is high. It is important to keep the error anti-correlation
in mind when assessing significance — if H(z) fluctuates
up then DM (z) will fluctuate down, which tends to re-
duce the tension relative to the CMB. However, our sub-
seqent analyses (and those already reported by [27]) will

Lines are Planck best fit predictions
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Figure 1. The BAO “Hubble diagram” from a world collection of detections. Blue, red, and green points show BAO mea-
surements of DV /rd, DM/rd, and zDH/rd, respectively, from the sources indicated in the legend. These can be compared
to the correspondingly colored lines, which represents predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3183,
h = 0.6704, see Section II C). The scaling by

p
z is arbitrary, chosen to compress the dynamic range su�ciently to make error

bars visible on the plot. Filled points represent BOSS data, which yield the most precise BAO measurements at z < 0.7 and
the only measurements at z > 2. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift;
auto-correlation points are plotted at the correct e↵ective redshift.

in Table II, we show measurements from the DR7 data
set of SDSS-II by [15] and from the WiggleZ survey by
[19], which are not included in our cosmological analysis
because they are not independent of the (more precise)
BOSS measurements in similar redshift ranges. Curves
represent the predictions of the fiducial Planck ⇤CDM
model, whose parameters are determined independently
of the BAO measurements but depend on the assump-
tions of a flat universe and a cosmological constant.
Overall, there is impressively good agreement between
the CMB-constrained ⇤CDM model and the BAO mea-
surements, especially as no parameters have been ad-
justed in light of the BAO data. However, there is no-
ticeable tension between the Planck ⇤CDM model and
the LyaF BAO measurements.

Figure 2 displays a subset of these BAO measurements
with scalings that elucidate their physical content. In the
upper panel, we plot H(z)/(1 + z), which is the proper
velocity between two objects with a constant comoving

separation of 1 Mpc. This quantity is declining in a
decelerating universe and increasing in an accelerating
universe. We set the x-axis to be

p
1 + z, which makes

H(z)/(1+z) a straight line of slope H
0

in an Einstein-de
Sitter (⌦m = 1) model. For the transverse BAO measure-
ments in the lower panel, we plot c ln(1+z)/DM (z), cho-
sen so that a constant (horizontal) line in the H(z)/(1+z)
plot would produce the same constant line in this panel,
assuming a flat Universe. This quantity would decrease
monotonically in a non-accelerating flat cosmology. The
quantities in both the upper and lower panels approach
H

0

as z approaches zero, independent of other cosmolog-
ical parameters. We convert the BOSS LOWZ and MGS
measurements of DV (z) to DM (z) in the lower panel as-
suming the fiducial Planck ⇤CDM parameters; this is a
robust approximation because all acceptable cosmologies
produce similar scaling at these low redshifts. Note that
the H(z) and DM (z) measurements from a given data
set (i.e., at a particular redshift) are covariant, in the
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predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3156, h = 0.6727). The scaling by

p

z is arbitrary, chosen to compress the dynamic range
sufficiently to make error bars visible on the plot. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift; auto-correlation
points are plotted at the correct effective redshift. Measurements shown by open points are not incorporated in our cosmological parameter analysis because
they are not independent of the BOSS measurements. [TODO: DW: It might be better to use filled for BOSS and open for the rest, which is what the
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“BOSS Ly↵-cross DR11”; at least use SDSS DR7. JAV: In the telecon we discussed about the filled points, so for the moment I leave them unchanged.]

al. 2016a), which is presented in Table 9 and denoted as G-M et
al. (2016 a+b+c). HGM: The individual RSD and BAO mea-
surements incorporate the systematic budget specified in the
corresponding papers: 0.003 in the BAO ↵k and ↵? measure-
ments (see table 2 of Gil-Marı́n et al. 2016a); 0.018 in the f�8,
0.012 in ↵k, and 0.0054 in ↵?, for the RSD power spectrum
only (see xxx section in Tinker et al. 2016); and 3 per cent in
f�8, and 1 per cent for ↵k and ↵? for the RSD power spec-
trum in combination with the bispectrum (see tables 2 and 3 of
Gil-Marı́n et al. 2016c). After the systematic budget is added
in quadrature with the statistical contribution, the individual
measurements are combined as described in section 8.4 of Gil-
Marı́n et al. 2016c which yields to the G-M et al. (2016 a+b+c)
measurement quoted in this paper. As before, this case is com-
pared to our full-shape column of Table 7, approximating LOWZ
to our low redshift bin and CMASS to our high redshift bin, where
the volume difference factor has been taken into account. Our DM

measurement of 1.7% in the low redshift bin and 1.8% in the high
redshift bin compares to 1.5% and 1.1%, respectively, in Gil-Marı́n
2016 a+b+c. Regarding H(z), our measurement of 2.8% in both
the low and high redshift bins compares to 2.5% and 1.8% in Gil-
Marı́n 2016 a+b+c. Finally our f�8 constraint of 9.5% and 8.9% in
the low and high redshift bin compares to the LOWZ and CMASS
measurements of 9.2% and 6.0% by Gil-Marin 2016a+b+c, which
again show the improvement from adding information from the bis-
pectrum. The lower precision of our measurement can be attributed

to omitting use of the bispectrum, which adds more signal to the
power spectrum BAO and full-shape, and has not been used in our
analysis. In addition, the analysis in Gil-Marı́n et al. (2016c) which
includes the bispectrum, full shape power-spectrum and BAO mea-
surement does not include the systematic error from the BAO nor
full shape power-spectrum analysis, but only from the bispectrum
analysis. This can in principle increase the error budget in the Gil-
Marı́n 2016 a+b+c. The same is true for H(z) and f�8 comparison.
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Figure 1. The BAO “Hubble diagram” from a world collection of detections. Blue, red, and green points show BAO measure-
ments of DV /rd, DM/rd, and DH/rd, respectively, from the sources indicated in the legend. These can be compared to the
correspondingly colored lines, which represents predictions of the fiducial Planck ⇤CDM model (with ⌦m = 0.3183, h = 0.6704,
see §II C). The scaling by

p
z is arbitrary, chosen to compress the dynamic range su�ciently to make error bars visible on the

plot. Filled points represent BOSS data, which yield the most precise BAO measurements at z < 0.7 and the only measurements
at z > 2. For visual clarity, the Ly↵ cross-correlation points have been shifted slightly in redshift; auto-correlation points are
plotted at the correct e↵ective redshift.

nova data can be combined to yield an “inverse distance
ladder” measurement of H

0

, which utilizes the CMB mea-
surements of !cb and !b but no other CMB information.
This value of H

0

is robust to very flexible assumptions
about dark energy evolution and space curvature, though
it does assume a standard radiation background for the
calculation of rd. We plot the resulting determination of
H

0

= 67.3±1.1 km s�1 Mpc�1 as the open square in both
panels.

The grey swath in both panels represents the 1� re-
gion for fiducial Planck ⇤CDM model, with the top panel
clearly showing the transition from deceleration to accel-
eration at z ⇡ 0.6. Formally, we are scaling both panels
by (rd/rd,fid), so that the comparison of the BAO data
points to the CMB prediction is invariant to changes in
the sound horizon. The galaxy BAO measurements of
DM (z) from BOSS and MGS are in excellent agreement
with the predictions of this model (as are the other mea-
surements shown previously in Fig. 1), and the combi-

nation of BAO and SNe yields an H
0

value in excellent
agreement with this model’s prediction. The expansion
rate H(z = 0.57) from CMASS is high compared to the
model prediction, at moderate significance. Compared
to Planck, the best-fit value of ⌦mh2 from the 9-year
WMAP analysis [57] is lower, 0.143 vs. 0.137, imply-
ing lower ⌦m and slightly higher h for a ⇤CDM model.
The model using these best-fit parameters, shown by the
dashed lines, agrees better with the CMASS H(z) mea-
surement but is in tension with the distance data, espe-
cially the CMASS value of DM (z = 0.57).

The Ly↵ forest measurements are much more di�cult
to reconcile with the ⇤CDM model: compared to the
Planck curve, the LyaF BAO H(z) is low and [DM (z)]�1

is high. It is important to keep the error anti-correlation
in mind when assessing significance — if H(z) fluctuates
up then DM (z) will fluctuate down, which tends to re-
duce the tension relative to the CMB. However, our sub-
seqent analyses (and those already reported by [27]) will
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Figure 15. Left-hand panel: Comparison of f�8(z) measurements across previous BOSS measurements in DR11 (Alam et al. 2015b; Beutler et al. 2014a;
Samushia et al. 2014; Sánchez et al. 2014) and DR12 (Gil-Marı́n et al. 2016b,c; Chuang et al. 2016) samples. Right-hand panel: The f�8(z) results from this
work compared with the measurements of the 2dfGRS (Percival et al. 2004b) and 6dFGS (Beutler et al. 2012), the GAMA (Blake et al. 2013), the WiggleZ
(Blake et al. 2012), the VVDS (Guzzo et al. 2008), and the VIPERS (de la Torre et al. 2013) surveys, as well as the measurements from the SDSS-I and
-II main galaxy sample (Howlett et al. 2015, MGS) and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on f�8

assuming a Planck ⇤CDM background cosmology SH: check if this is true for all the parameters. This can be seen as a test of general relativity. HGM:
update Gil-Marin 2015 as Gil-Marin 2016b and Gil-Marin 2016 as Gil-Marin 2016c to be consistent with the text.

9 COSMOLOGICAL PARAMETERS

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and ta-
bles, the former case is simply labeled “BAO.”

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Ly↵ forest
BAO measurements (see Fig. 14 and §8.3). These are largely in-
dependent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photomet-
ric clustering and from the WiggleZ survey (Blake et al. 2011a,
2012), as the volumes partially overlap BOSS and the errors are
sufficiently large that a proper inclusion would not substantially
affect the results. As shown in Aubourg et al. (2015), these mea-
surements are in good agreement with those from BOSS. We note
in particular the good match to the WiggleZ results, as this was a
sample of strongly star-forming galaxies in marked contrast to the
red massive galaxies used in BOSS. This opportunity was studied
extensively with a joint analysis of the overlap region of WiggleZ
and BOSS (Beutler et al. 2016a).

We further opt not to include other RSD measurements be-
yond BOSS, as they come from a variety of analysis and modelling
approaches. One can see from Figure 15 that the measurements
from other surveys are consistent with those from BOSS within
their quoted errors, and the error bars in all cases are large enough
that there are potential gains from combining multiple measure-
ments. However, in contrast to BAO measurements, systematic er-
rors associated with non-linear clustering and galaxy bias are a ma-
jor component of the error budget in any RSD analysis, and these
systematics may well be covariant from one analysis to another in
a way that is difficult to quantify. Because of systematic error con-
tributions, we do not consider it feasible to carry out a robust joint
RSD analysis with other measurements.

In all cases, we combine with CMB anisotropy data from the

Planck 2015 release (Planck Collaboration XIII 2015). We use the
power spectra for both temperature and polarization; in detail, we
use the likelihoods plik dx11dr2 HM v18 TTTEEE and lowTEB
for the high and low multipoles, respectively. We do not include
the information from the lensing of the CMB in the 4-point corre-
lations of the CMB temperature anisotropies. We will discuss the
impact of the recent (Planck Collaboration XLVI 2016) large-angle
polarization results in §9.4.

We note that there is some mild tension between the Planck
2015 results and those from combining WMAP, SPT, and ACT
(Calabrese et al. 2013; Spergel et al. 2015; Bennett et al. 2016).
The Planck data set yields a mildly higher matter density ⌦mh2,
which for ⇤CDM implies a higher ⌦m and �8 and a lower H0.
As in the DR11 results, our BOSS results for ⇤CDM fall in be-
tween these two and therefore do not prefer either CMB option.
We have presented non-Planck results in Anderson et al. (2014b)
and Aubourg et al. (2015) and do not repeat that here, as the sense
of the differences has not changed.

Finally, for some cases, we utilize measurements of the
distance-redshift relation from Type Ia supernovae (SNe) from the
Joint Lightcurve Analysis (JLA, Betoule et al. 2014), which com-
bined SNe from the SDSS-II Supernova Survey (Sako et al. 2014)
and the Supernova Legacy Survey 3-year data set (Conley et al.
2011) together with local and high-z data sets. The combination
of SN measurements with BAO is particularly powerful for con-
straining the low-redshift distance scale (e.g., Mehta et al. 2012;
Anderson et al. 2014b). The SNe provide a higher precision mea-
surement of relative distance at lower redshift where the BAO is
limited by cosmic volume, but the BAO provides an absolute scale
that connects to higher redshift and particularly to the CMB acous-
tic scale at z = 1000. The combination of BAO and SN data also
allows an “inverse distance ladder” measurement of H0 that uses
the CMB-based calibration of rd but is almost entirely insensitive
to the dark energy model and space curvature over the range al-
lowed by observations (Aubourg et al. 2015).
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Figure 1: The power of DESI is in both the precision and the wide range of redshifts it will
cover, making it competitive even with the Euclid space-based mission. Shown are the fractional
error on the BAO distance scale (isotropic dilation factor), as a function of redshift, per unit ln(a)
(in other words, the e↵ect of any arbitrary redshift bin width �z is removed in this plot). Errors
from the Ly↵ forest measurement, which dominate at z > 1.8, are computed following McDonald
& Eisenstein (2007), with a modest but significant additional contribution from cross-correlations
with quasar density. We assume here an optimistic 50 million galaxies for EUCLID.

energy programs; their focus is on the follow-up of GAIA and eRosita objects.
The European EUCLID satellite will launch sometime early in the next decade. It is

also a Stage-IV dark energy experiment. EUCLID is designed to measure weak lensing and
BAO in the redshift range 1.4 to 2.0. The NASA/WFIRST mission is in formulation. In
its current design (using a 2.4-meter mirror, intended for 2022 launch), the BAO survey
would cover a much smaller area than DESI but at much higher sampling density, making
the two experiments complementary. Finally, new experimental techniques, such as BAO
using observations of the 21cm line of neutral hydrogen hold significant future promise, but
their designs do not allow the more revealing broadband power spectrum measurements
of DESI. Such experiments include CHIME and BAOBAB, both of which have pathfinder
instruments under construction. These surveys are summarized in Table 1 and the science
reach for the BAO surveys is illustrated in Figure 1. The power of DESI is in both the
precision and the wide range of redshifts it will cover, making it competitive even with the
Euclid space-based mission.

4

Table 1: Summary of current or planned BAO capable spectroscopic surveys. [Eisenstein,
2001][Hogg, 2005] [Drinkwater, 2010][Scrimgeour, 2012] [Eisenstein, 2011][Bolton, 2012]
[Hill, 2008] [Abdalla, 2012] [Schlegel, 2011] [Ellis, 2012] [de Jong, 2012] [Amiaux, 2012]

Instrument Telescope Nights/ year No. Galaxies sq deg Ops Start
SDSS I+II APO 2.5m dedicated 85K LRG 7600 2000
Wiggle-Z AAT 3.9m 60 239K 1000 2007
BOSS APO 2.5m dedicated 1.4M LRG+160K Ly-↵ 10000 2009
HETDEX HET 9.2m 60 1M 420 2014
eBOSS APO 2.5m 180 600K LRG + 70K Ly-↵ 7000 2014
DESI NOAO 4m dedicated +20M + 800k Ly-↵ 14000 2018
SUMIRE PFS Subaru 8.2m 20 4M 1400 2018
4MOST VISTA 4.1m shared facility 6-20M bright objects 15000 2019
EUCLID 1.2m space dedicated 52M 14700 2021

4 DESI Instrument Reference Design

The design of the DESI instrument is set by the key science project and operational re-
quirements, primary ones being:

• Survey operates from 2018 through 2022

• 14,000 – 18,000 sq. deg. BAO/RSD redshift survey

• Targets are LRGs, ELGs and QSOs including Ly-↵ forest

• 20 � 30 million targeted galaxies and QSOs for 0.5 < z < 3.5

• Spectroscopic resolution su�cient for redshift error < 0.001(1 + z)

Performing a wide, deep spectroscopic survey of a large volume of the Universe with a
density > 1500 galaxies/deg2 in a five-year survey requires a high throughput spectrograph
capable of observing thousands of spectra simultaneously. The DESI project is designed
to achieve these ambitious goals. The instrument components are 1) prime focus corrector
optics to achieve a wide field of view, 2) focal plane with robotic fiber positioners, 3) fiber
optics cable management system, 4) spectrographs, 5) a real-time control and data acquisi-
tion systems, and 6) a data processing pipeline that ingests raw data from the detectors and
produces calibrated spectra useful for cosmological investigation. A conceptual drawing of
the telescope and instrument is shown in Figure 2.

Here we briefly discuss critical instrument parameters and their connection to the key
science projects and operational constraints. The Mayall telescope has been identified as
the telescope most suitable for DESI, and DOE and NSF are currently discussing the terms
for its use. The Mayall is a 4-m telescope capable of supporting complex prime focus
instruments and attaining a field of view from 2.5 � 3.0 degrees diameter. Combining the
field of view, survey duration, galaxy spectra count, spectral resolution, and signal-to-noise
leads to a focal plane design that accommodates 4000 � 5000 repositionable optical fibers
on a 12 mm or smaller pitch. The entire focal plane needs to be reconfigured for the next
exposure in less than a minute with the fiber tips placed with an accuracy of 5µm r.m.s.
with robotic positioners. The repositioning time overlaps telescope slew and readout of

5
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